非监督特征选择的最优化模型

发布者:文明办作者:发布时间:2020-09-28浏览次数:10


主讲人:王勇  中国科学院数学与系统科学研究院研究员


时间:2020年9月29日14:00


地点:3号楼332会议室


举办单位:数理学院


主讲人介绍:中国科学院数学与系统科学研究院应用数学所研究员, 国家优秀青年基金获得者。1999 年从内蒙古大学数学系的数学物理专业本科学位,2002 年从大连理工大学应用数学系获得运筹学与控制论硕士学位,2005年从中国科学院数学与系统科学研究院获得运筹学与控制论专业的理学博士学位。曾先后到日本大阪产业大学电子情报通信系,波士顿大学生物信息学中心, 日本产业技术综合研究所计算生物研究中心和斯坦福大学统计系从事访问研究。王勇研究员目前的研究兴趣是最优化理论与算法和生物医学大数据建模。


内容介绍:构建将数据维数降低、利于进一步处理、可视化和理解信息的数学模型,已成为各科学领域面对的一个共同问题。该问题在人工智能和机器学习领域也被称为特征选择,是一个根据一定的评估准则最优地从初始高维特征集合中选出低维特征集合的过程。我们将介绍我们最近在无监督特征选择的一些进展,重点介绍同时最大化保持数据拓扑结构和最小化特征数目的多目标优化模型,以及用线性规划来近似混合整数规划获得高效的求解算法. 并将以多组织、细胞类型的转录组数据降维为例介绍几个具体应用。

友情链接:外围体育  AG真人国际厅  澳门威尼人斯人棋牌网址  亚博最新官网  ebet真人官网平台  188bet亚洲真人博彩  千亿国际qy88vip  金沙娱城乐app下载